• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Qin, Fei (Qin, Fei.) (Scholars:秦飞) | Zhang, Yang (Zhang, Yang.) | Liu, Ya-Nan (Liu, Ya-Nan.)

Indexed by:

EI Scopus SCIE CSCD

Abstract:

Deforming a cracked magnetoelastic body in a magnetic field induces a perturbed magnetic field around the crack. The quantitative relationship between this perturbed field and the stress around the crack is crucial in developing a new generation of magnetism-based nondestructive testing technologies. In this paper, an analytical expression of the perturbed magnetic field induced by structural deformation of an infinite ferromagnetic elastic plate containing a centered crack in a weak external magnetic field is obtained by using the linearized magnetoelastic theory and Fourier transform methods. The main finding is that the perturbed magnetic field intensity is proportional to the applied tensile stress, and is dominated by the displacement gradient on the boundary of the magnetoelastic solid. The tangential component of the perturbed magnetic-field intensity near the crack exhibits an antisymmetric distribution along the crack that reverses its direction sharply across its two faces, while the normal component shows a symmetric distribution along the crack with singular points at the crack tips.

Keyword:

Crack Perturbed magnetic field Fourier transform method Magnetoelasticity Nondestructive testing

Author Community:

  • [ 1 ] [Qin, Fei]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Yang]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Liu, Ya-Nan]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 秦飞

    [Qin, Fei]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

ACTA MECHANICA SINICA

ISSN: 0567-7718

Year: 2011

Issue: 2

Volume: 27

Page: 259-265

3 . 5 0 0

JCR@2022

ESI Discipline: ENGINEERING;

JCR Journal Grade:2

CAS Journal Grade:3

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count: 1

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 12

Online/Total:949/10944161
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.