Indexed by:
Abstract:
Using electron microscopy and diffraction techniques, as well as first-principles calculations, we demonstrate that as much as 35% of the total Ge atoms in the cubic phase of Ge2Sb2Te5 locate in tetrahedral environments. The Ge-vacancy interactions play a crucial stabilizing role, leading to Ge-vacancy pairs and the sharing of vacancies that clusters tetrahedral Ge into domains. The Ge2Sb2Te5 structure with coexisting octahedral and tetrahedral Ge produces optical and structural properties in good agreement with experimental data and explains the property contrast as well as the rapid transformation in this phase-change alloy.
Keyword:
Reprint Author's Address:
Email:
Source :
PHYSICAL REVIEW LETTERS
ISSN: 0031-9007
Year: 2011
Issue: 2
Volume: 106
8 . 6 0 0
JCR@2022
ESI Discipline: PHYSICS;
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 68
SCOPUS Cited Count: 76
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 11
Affiliated Colleges: