• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Meng, Xue (Meng, Xue.) | Zhang, Lei (Zhang, Lei.) | Dai, Hongxing (Dai, Hongxing.) (Scholars:戴洪兴) | Zhao, Zhenxuan (Zhao, Zhenxuan.) | Zhang, Ruzhen (Zhang, Ruzhen.) | Liu, Yuxi (Liu, Yuxi.)

Indexed by:

EI Scopus SCIE

Abstract:

Monoclinic BiVO4 single-crystallites with polyhedral, rod-like, tubular, leaf-like, and spherical morphologies have been fabricated using the triblock copolymer P123-assisted hydrothermal strategy with bismuth nitrate and ammonium metavanadate as metal source and various bases as pH adjustor. The physicochemical properties of the materials were characterized by means of the XRD, TGA/DSC, Raman, HRSEM, HRTEM/SAED, XPS, and UV-vis techniques. The photocatalytic activities of the as-fabricated BiVO4 samples were measured for the photodegradation of methylene blue (MB) under visible-light irradiation. It is shown that factors, such as the pH value of precursor solution, the introduction of surfactant, the nature of alkaline source, and the hydrothermal temperature, have a crucial influence on the particle architecture of the BiVO4 product. Among the as-fabricated BiVO4 samples, the ones derived hydrothermally with P123 at pH = 6 or 10 possessed excellent optical absorption performance both in UV- and visible-light regions and hence showed outstanding photocatalytic activities for the addressed reaction. The unusually high visible-light-driven catalytic performance of monoclinically crystallized rod-like and tubular BiVO4 single-crystallites is associated with the higher surface areas and concentrations of surface oxygen defects, and unique particle morphologies. The possible formation mechanisms of such multiple morphological BiVO4 materials have also been discussed. (C) 2010 Elsevier B.V. All rights reserved.

Keyword:

Organic dye photodegradation Bismuth vanadate Visible-light-driven photocatalyst Surfactant-mediated hydrothermal strategy Morphosynthesis

Author Community:

  • [ 1 ] [Meng, Xue]Beijing Univ Technol, Coll Environm & Energy Engn, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Lei]Beijing Univ Technol, Coll Environm & Energy Engn, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Dai, Hongxing]Beijing Univ Technol, Coll Environm & Energy Engn, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Zhao, Zhenxuan]Beijing Univ Technol, Coll Environm & Energy Engn, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Zhang, Ruzhen]Beijing Univ Technol, Coll Environm & Energy Engn, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Beijing 100124, Peoples R China
  • [ 6 ] [Liu, Yuxi]Beijing Univ Technol, Coll Environm & Energy Engn, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 戴洪兴

    [Dai, Hongxing]Beijing Univ Technol, Coll Environm & Energy Engn, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

MATERIALS CHEMISTRY AND PHYSICS

ISSN: 0254-0584

Year: 2011

Issue: 1-2

Volume: 125

Page: 59-65

4 . 6 0 0

JCR@2022

ESI Discipline: MATERIALS SCIENCE;

JCR Journal Grade:1

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count: 127

SCOPUS Cited Count: 133

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 5

Online/Total:500/10558066
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.