• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Saddique, Jaffer (Saddique, Jaffer.) | Zhang, Xu (Zhang, Xu.) | Wu, Tianhao (Wu, Tianhao.) | Su, Heng (Su, Heng.) | Liu, Shiqi (Liu, Shiqi.) | Zhang, Dian (Zhang, Dian.) | Zhang, Yuefei (Zhang, Yuefei.) (Scholars:张跃飞) | Yu, Haijun (Yu, Haijun.) (Scholars:尉海军)

Indexed by:

EI Scopus SCIE CSCD

Abstract:

The optimization of anode materials such as Sn, P and Sn4P3 in terms of capacity and cyclability is crucial to improve the overall performance of sodium-ion batteries. However, the delicate fabrication of these materials, including the balanced crystalline/amorphous domains, reasonable particle size and distribution, complementary components exhibiting synergetic reactions, among others, still greatly retards the realization of maximum performance. Herein, a series of Sn/P-based composite materials with a plum pudding configuration were fabricated to achieve controlled crystalline/amorphous structures as well as optimized size and distribution in a carbon framework. By using a facile and low-cost ball milling method, the structural transformation of Sn4P3 into phase-separated crystalline Sn and amorphous P in a carbonaceous framework can be finely controlled, producing a series of binary (Sn4P3/C), quaternary (Sn4P3/Sn/P/C) and ternary (Sn/P/C) composites. Due to the complementary components, crystalline/amorphous adjustment, crystallite sizes and well-integrated interfaces, the quaternary Sn4P3/Sn/PIC composite showed the best electrochemical performance, with a noticeable long-cycle performance of 382 mA h g(-1) and 86% capacity retention for nearly 300 cycles. Different from binary and ternary composites, the discharge of quaternary composite generates no noticeable signals of Na15Sn4 and Na3P in the ex-situ X-ray diffraction patterns, suggesting the crystallite growth of sodiation products can be depressed. Moreover, Sn4P3 in the quaternary composite can be partially regenerated in the desodiation reaction, implying the significant short-range interaction and thus better synergetic reactions between Sn and P components. The results demonstrate that the design and organization of crystalline/amorphous structures can serve as an efficient strategy to develop novel electrode materials for sodium ion batteries. (C) 2019 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.

Keyword:

Tin phosphides Sodium ion battery Reaction mechanism Anode materials Composite structure

Author Community:

  • [ 1 ] [Saddique, Jaffer]Beijing Univ Technol, Educ Minist China, Key Lab Adv Funct Mat, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Xu]Beijing Univ Technol, Educ Minist China, Key Lab Adv Funct Mat, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Wu, Tianhao]Beijing Univ Technol, Educ Minist China, Key Lab Adv Funct Mat, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Su, Heng]Beijing Univ Technol, Educ Minist China, Key Lab Adv Funct Mat, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Liu, Shiqi]Beijing Univ Technol, Educ Minist China, Key Lab Adv Funct Mat, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 6 ] [Zhang, Dian]Beijing Univ Technol, Educ Minist China, Key Lab Adv Funct Mat, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 7 ] [Yu, Haijun]Beijing Univ Technol, Educ Minist China, Key Lab Adv Funct Mat, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 8 ] [Saddique, Jaffer]Beijing Univ Technol, Inst Microstruct & Property Adv Mat, Beijing 100124, Peoples R China
  • [ 9 ] [Zhang, Yuefei]Beijing Univ Technol, Inst Microstruct & Property Adv Mat, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 张跃飞 尉海军

    [Yu, Haijun]Beijing Univ Technol, Educ Minist China, Key Lab Adv Funct Mat, Coll Mat Sci & Engn, Beijing 100124, Peoples R China;;[Zhang, Yuefei]Beijing Univ Technol, Inst Microstruct & Property Adv Mat, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY

ISSN: 1005-0302

Year: 2020

Volume: 55

Page: 73-80

1 0 . 9 0 0

JCR@2022

ESI Discipline: MATERIALS SCIENCE;

ESI HC Threshold:169

Cited Count:

WoS CC Cited Count: 23

SCOPUS Cited Count: 24

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 7

Online/Total:368/10596234
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.