Indexed by:
Abstract:
Sulphur dioxide, as one of the most common air pollutant gases, brings considerable numbers of hazards on human health and environment. For the purpose of reducing the detrimental effect it brings, it is of urgent necessity to control emissions of flue gas in power plants, since a substantial proportion of sulphur dioxide in the atmosphere stems from flue gas generated in the whole process of electricity generation. However, the complexity and nondeterminism of the environment increase the occurrences of anomalies in practical flue gas desulphurization system. Anomalies in industrial desulphurization system would induce severe consequences and pose challenges for high-performance control with classical control strategies. In this article, based on process data sampled from 1000 MW unit flue gas desulphurization system in a coal-fired power plant, a multimodel control strategy with multilayer parallel dynamic neural network (MPDNN) is utilized to address the control problem in the context of different anomalies. In addition, simulation results indicate the applicability and effectiveness of the proposed control method by comparing with different cases.
Keyword:
Reprint Author's Address:
Email:
Source :
COMPLEXITY
ISSN: 1076-2787
Year: 2020
Volume: 2020
2 . 3 0 0
JCR@2022
ESI Discipline: MATHEMATICS;
ESI HC Threshold:46
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 6
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: