Indexed by:
Abstract:
SVM解决两分类问题时,在大规模数据上训练速度很慢,利用数据提取的方法可以减少训练样本数目,加快训练速度。本文利用马氏距离和"aσ-方法"提出新的数据提取方法,根据样本点到训练集的马氏距离来确定样本点与样本集的位置关系,只提取对于建立超平面有作用的样本点,避免了以往数据提取方法的随机性;并考虑提取的数据占原来总样本集数目的比例,通过调整a的值,控制数据提取的数量,避免提取后训练样本集的数据太多或太少,从而加快SVM的训练速度。
Keyword:
Reprint Author's Address:
Email:
Source :
数理统计与管理
Year: 2008
Issue: 03
Page: 409-417
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 10
Affiliated Colleges: