Abstract:
针对传统信用风险评价模型只含有一个分类器的缺陷,本文利用AdaBoost组合分类器来对上市公司信用风险进行评价,并与基于支持向量机和神经网络的分类模型进行了效果比较。实证研究表明,组合分类器克服了单一分类器的诸多缺点,预测准确率高于单一分类器。
Keyword:
Reprint Author's Address:
Email:
Source :
财会月刊
Year: 2008
Issue: 18
Page: 66-67
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: