Indexed by:
Abstract:
The study aimed at solving the instability of shortcut nitrification-denitrification through real-time control strategies. The results showed that excess aeration (aeration was still on after nitrosation) had an adverse impact on the stabilization of shortcut nitrification-denitrification, with nitrosation ratio (NO(2)(-)-N/NO(x)(-)-N) decreasing from 96% to 29% after excess aeration for 13 cycles, indicating that excess aeration was prone to change nitrification modes from shortcut nitrification to full nitrification. By using real-time control, shortcut nitrification and full nitrification were clearly detected by characteristic points on ORP and pH curves. Thus, aeration was stopped once nitrosation was completed, and shortcut nitrification-denitrification was maintained with nitrosation ratio (NO(2)(-)-N/NO(x)(-)-N) higher than 96%. The study showed that real-time control strategy could prevent excess aeration and achieve stable shortcut nitrification-denitrification. Crown Copyright (C) 2008 Published by Elsevier Ltd. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
BIORESOURCE TECHNOLOGY
ISSN: 0960-8524
Year: 2009
Issue: 7
Volume: 100
Page: 2298-2300
1 1 . 4 0 0
JCR@2022
ESI Discipline: BIOLOGY & BIOCHEMISTRY;
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 93
SCOPUS Cited Count: 127
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: