Indexed by:
Abstract:
The feasibility of simultaneous partial nitrification, denitrification and phosphorus removal (SPNDPR) process was investigated in a single-stage anaerobic/micro-aerobic sequencing batch reactor for treating real sewage. Partial nitrification was maintained with average nitrite accumulation ratio of 90.3% during 266 days' operation. Removal efficiencies for NH4+-N (96.3%), total inorganic nitrogen (81.4%), and phosphorus (91.0%) were stably obtained when treated real sewage with low carbon/nitrogen (3.4), with simultaneous partial nitrification and denitrification efficiency of 73.1%. The mechanism analysis revealed that denitrifying glycogen-accumulating organisms (DGAOs) and denitrifying polyphosphate-accumulating organisms (DPAOs) played the main roles in N-removal and P-removal, respectively. Nitrite pathway and optimized use of the organic carbon available in the sewage were keys for the successful performance. Further microbial community illustrating that DGAOs Candidatus_Competibacter, DPAOs Dechloromonas, and ammonia-oxidizing bacteria Nitrosomonadaceae were main functional groups. Notably, sludge granulation was formed under long-term synchronous low dissolved oxygen and low sludge loading conditions, avoiding sludge bulking. (C) 2020 Elsevier Ltd. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
CHEMOSPHERE
ISSN: 0045-6535
Year: 2020
Volume: 257
8 . 8 0 0
JCR@2022
ESI Discipline: ENVIRONMENT/ECOLOGY;
ESI HC Threshold:138
Cited Count:
WoS CC Cited Count: 64
SCOPUS Cited Count: 79
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9