Indexed by:
Abstract:
To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was studied in a pilot-scale, anaerobicanoxic oxidation ditch (OD), where the volumes of anaerobic zone, anoxic zone, and ditches zone of the OD system were 7, 21, and 280 L, respectively. The reactor was fed with municipal wastewater with a flow rate of 336 L/d. The concept of simultaneous nitrification and denitrification (SND) rate (r(SND)) was put forward to quantify SND. The results indicate that: (1) high nitrogen and phosphorus removal efficiencies were achieved during the stable SND phase, total nitrogen (TN) and total phosphate (TP) removal rates were 80% and 85%, respectively; (2) when the system was aerated excessively, the stability of SND was damaged, and r(SND) dropped from 80% to 20% or less; (3) the natural logarithm of the ratio of NOx to NH4+ in the effluent had a linear correlation to oxidation-reduction potential (ORP); (4) when NO3- was less than 6 mg/L, high phosphorus removal efficiency could be achieved; (5) denitrifying phosphorus removal (DNPR) could take place in the anaerobic-anoxic OD system. The major innovation was that the SND rate was devised and quantified.
Keyword:
Reprint Author's Address:
Email:
Source :
JOURNAL OF ENVIRONMENTAL SCIENCES
ISSN: 1001-0742
Year: 2008
Issue: 4
Volume: 20
Page: 398-403
6 . 9 0 0
JCR@2022
ESI Discipline: ENVIRONMENT/ECOLOGY;
JCR Journal Grade:4
Cited Count:
WoS CC Cited Count: 42
SCOPUS Cited Count: 61
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 11