Indexed by:
Abstract:
为了提高对不同认知状态下脑电信号(EEG)的分类正确率,提出一种GMDH型神经网络及改进的训练算法.此网络结构在演化中生成,分类规则由简单多项式表示,训练算法可防止出现过拟合.此网络用于区分算术运算和休息状态下的脑电信号,正确率达到84.5%,与标准前向型神经网络(FNN)比较,显示了较好的分类效果.
Keyword:
Reprint Author's Address:
Email:
Source :
中国生物医学工程学报
ISSN: 0258-8021
Year: 2005
Issue: 1
Volume: 24
Page: 66-69
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: 13
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: