Indexed by:
Abstract:
对一种在Elman动态递归网络基础上发展而来的复合输入动态递归网络(CIDRNN)作了改进,提出一种新的动态递归神经网络结构,称为状态延迟动态递归神经网络(State DelayInput Dynamical Recurrent Neural Network).具有这种新的拓扑结构和学习规则的动态递归网络,不仅明确了各权值矩阵的意义,而且使权值的训练过程更为简洁,意义更为明确.仿真实验表明,这种结构的网络由于增加了网络输入输出的前一步信息,提高了收敛速度,增强了实时控制的可能性.然后将该网络用于机器人未知非线性动力学的辨识中,使用辨识实际输出与机理模型输出之间的偏差,来识别机理模型或简化模型所丢失的信息,既利用了机器人现有的建模方法,又可以减小网络运算量,提高辨识速度.仿真结果表明了这种改进的有效性.
Keyword:
Reprint Author's Address:
Email:
Source :
自动化学报
ISSN: 0254-4156
Year: 2003
Issue: 5
Volume: 29
Page: 741-747
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: 8
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: