Indexed by:
Abstract:
Opinion-unaware blind image quality assessment (OU BIQA) refers to establishing a blind quality prediction model without using the expensive subjective quality scores, which is a highly promising direction in the BIQA research. In this article, we focus on OU BIQA and propose a novel OU BIQA method. Specifically, in our proposed method, we deeply investigate the natural scene statistics (NSS) and the perceptual characteristics of the human brain for visual perception. Accordingly, a set of quality-aware NSS and perceptual characteristics-related features are designed to characterize the image quality effectively. For inferring the image quality, we learn a pristine multivariate Gaussian (MVG) model on a collection of pristine images, which serves as the reference information for quality evaluation. At last, the quality of a new given image is defined by measuring the divergence between its MVG model and the learned pristine MVG model. Thorough experiments performed on seven popular image databases demonstrate that the proposed OU BIQA method delivers superior performance to the state-of-the-art OU BIQA methods. The Matlab source code of the proposed method will be made publicly available at https://github.com/YT2015?tab=repositories.
Keyword:
Reprint Author's Address:
Email:
Source :
ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS
ISSN: 1551-6857
Year: 2020
Issue: 3
Volume: 16
5 . 1 0 0
JCR@2022
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:132
Cited Count:
WoS CC Cited Count: 44
SCOPUS Cited Count: 62
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: