Abstract:
针对传统的K-means 聚类算法存在的缺点,本文提出一种基于密度指标去除噪声点和孤立点的算法,该算法以每个点的密度大小是否满足一个阈值为条件,判定该点是否为孤立点,实验表明该算法能有效消除样本中的噪声点和孤立点对K-means 聚类中心的影响。再利用减法聚类算法初始化K-means 算法的聚类中心,并得到聚类中心的个数,将改进后的K-means 算法优化RBF 神经网络结构,通过对典型非线性函数的逼近,表明所提出的算法具有较强的逼近能力。
Keyword:
Reprint Author's Address:
Email:
Source :
Year: 2015
Page: 1-1
Language: Chinese
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 0