Indexed by:
Abstract:
Purpose Image classification is becoming a supporting technology in several image-processing tasks. Due to rich semantic information contained in the images, it is very popular for an image to have several labels or tags. This paper aims to develop a novel multi-label classification approach with superior performance. Design/methodology/approach Many multi-label classification problems share two main characteristics: label correlations and label imbalance. However, most of current methods are devoted to either model label relationship or to only deal with unbalanced problem with traditional single-label methods. In this paper, multi-label classification problem is regarded as an unbalanced multi-task learning problem. Multi-task least-squares support vector machine (MTLS-SVM) is generalized for this problem, renamed as multi-label LS-SVM ((MLS)-S-2-SVM). Findings Experimental results on the emotions, scene, yeast and bibtex data sets indicate that the (MLS)-S-2-SVM is competitive with respect to the state-of-the-art methods in terms of Hamming loss and instance-based F1 score. The values of resulting parameters largely influence the performance of (MLS)-S-2-SVM, so it is necessary for users to identify proper parameters in advance. Originality/value On the basis of MTLS-SVM, a novel multi-label classification approach, (MLS)-S-2-SVM, is put forward. This method can overcome the unbalanced problem but also explicitly models arbitrary order correlations among labels by allowing multiple labels to share a subspace. In addition, the multi-label classification approach has a wider range of applications. That is to say, it is not limited to the field of image classification.
Keyword:
Reprint Author's Address:
Email:
Source :
ELECTRONIC LIBRARY
ISSN: 0264-0473
Year: 2019
Issue: 6
Volume: 37
Page: 1040-1058
ESI Discipline: SOCIAL SCIENCES, GENERAL;
ESI HC Threshold:84
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 11
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: