Indexed by:
Abstract:
There are various of skin pigmented lesions with high risk. Melanoma is one of the most dangerous forms of skin cancer. It is one of the important research directions of medical artificial intelligence to carry out classification research of skin pigmented lesions based on deep learning. It can assist doctors to make clinical diagnosis and make patients receive treatment as soon as possible to improve survival rate. Aiming at the similar and imbalanced dermoscopic image data of pigmented lesions, this paper proposes a deep residual network improved by Squeeze-and-Excitation module, and dynamic update class-weight, in batches, with model ensemble adjustment strategies to change the attention of imbalanced data. The results show that the above method can increase the average precision by 9.1%, the average recall by 15.3%, and the average F1-score by 12.2%, compared with the multi-class classification using the deep residual network. Thus, the above method is a better classification model and weight adjustment strategy.
Keyword:
Reprint Author's Address:
Source :
HEALTH INFORMATION SCIENCE, HIS 2019
ISSN: 0302-9743
Year: 2019
Volume: 11837
Page: 58-67
Language: English
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: