Indexed by:
Abstract:
Coding tree unit (CTU) partition technique provides excellent compression performance for HEVC at the expense of increased coding complexity. Therefore, a fast intra coding algorithm based CTU depth range prediction is proposed to reduce the complexity of HEVC intra coding herein. First, simple CTUs and complex CTUs are defined in line with their texture complexity, which are limited to different depth ranges. Then, the convolutional neural network architecture for HEVC intra depth range (HIDR-CNN) decision-making is proposed. It is used for CTU classification and depth range restriction. Last, the optimal CTU partition is achieved by recursive rate distortion (RD) cost calculation in the depth range. Experimental results show that the proposed algorithm can achieve average 27.54% encoding time reduction with negligible RD loss compared with HM 16.9. The proposed algorithm devotes to promote popularization of HEVC in real-time environments.
Keyword:
Reprint Author's Address:
Email:
Source :
2018 IEEE 3RD INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC)
Year: 2018
Page: 551-555
Language: English
Cited Count:
WoS CC Cited Count: 12
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: