Indexed by:
Abstract:
Social annotation systems enable users to annotate large-scale texts with tags which provide a convenient way to discover, share and organize rich information. However, manually annotating massive texts is in general costly in manpower. Therefore, automatic annotation by tag prediction is of great help to improve the efficiency of semantic identification of social contents. In this paper, we propose a tag prediction model based on convolutional neural networks (CNN) and bi-directional long short term memory (BiLSTM) network, through which, tags of texts can be predicted efficiently and accurately. By Experiments on real-world datasets from a social Q&A community, the results show that the proposed CNN-BiLSTM model achieves state-of-the-art accuracy for tag prediction.
Keyword:
Reprint Author's Address:
Source :
ADVANCES IN SWARM INTELLIGENCE, ICSI 2018, PT II
ISSN: 0302-9743
Year: 2018
Volume: 10942
Page: 339-348
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 11
Affiliated Colleges: