Indexed by:
Abstract:
Linear regression models for interval-valued data have been widely studied. Most literatures are to split an interval into two real numbers, i.e., the left- and right-endpoints or the center and radius of this interval, and fit two separate real-valued or two dimension linear regression models. This paper is focused on the bias-corrected and heteroscedasticity-adjusted modeling by imposing order constraint to the endpoints of the response interval and weighted linear least squares with estimated covariance matrix, based on a generalized linear model for interval-valued data. A three step estimation method is proposed. Theoretical conclusions and numerical evaluations show that the proposed estimator has higher efficiency than previous estimators.
Keyword:
Reprint Author's Address:
Email:
Source :
JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY
ISSN: 1009-6124
Year: 2020
Issue: 6
Volume: 33
Page: 2048-2066
2 . 1 0 0
JCR@2022
ESI Discipline: MATHEMATICS;
ESI HC Threshold:46
Cited Count:
WoS CC Cited Count: 7
SCOPUS Cited Count: 7
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: