• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Han, Hong-Gui (Han, Hong-Gui.) (Scholars:韩红桂) | Zhang, Shuo (Zhang, Shuo.)

Indexed by:

CPCI-S

Abstract:

Pollution of Membrane Bioreactor (MBR) remains a serious issue for the development of MBR process. An early warning system for stifling the risks of membrane pollution is of prime importance. Misdiagnosis, incorrectly treatment and over treatment always exist in traditional early warning system, which cannot satisfy the growing requirements of these wastewater treatment plants (WWTPs). Considering all the factors mentioned above, in this paper, an early warning system based on data and knowledge was successfully developed, composed of forecasting and evaluation. First, a scheme was designed and developed for the early warning system. Second, a data-driven tbrecasting model was proposed as an important part of this system based on the theory of partial least squares (PLS) and time series multi-step prediction method. Finally, the early warning risk level was evaluated by expert knowledge and deep belief network (DBN) classifier, meanwhile, the pollution warning levels were output accordingly. Experimental results demonstrate that both the accuracy and effectiveness of the early warning system are greatly superior.

Keyword:

multi-step prediction Membrane Bioreactor early warning system permeability deep learning based classifier

Author Community:

  • [ 1 ] [Han, Hong-Gui]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Zhang, Shuo]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

Reprint Author's Address:

  • 韩红桂

    [Han, Hong-Gui]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

Show more details

Related Keywords:

Source :

2017 CHINESE AUTOMATION CONGRESS (CAC)

ISSN: 2688-092X

Year: 2017

Page: 7442-7447

Language: English

Cited Count:

WoS CC Cited Count: 3

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 13

Online/Total:690/10645643
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.