Indexed by:
Abstract:
Event recognition is the process of determining the event type and state of crowd on video under analysis by a machine learning process. In order to improve the accuracy, this paper proposes a method that using optical flow of corner points and convolutional neural network to recognize crowd events on video. First, extract and filter the FAST (Features from Accelerated Segment Test) corner points. Then, track those points using Lucas-Kanade optical flow and get coordinate vectors. Finally, train an improved convolutional neural network based on LeNet model. Experiment on the PETS 2009 dataset using surveillance systems shows that, Average error rate for classifying the 6 crowd events is 0.11. So the method can recognize a variety of defined crowd events and improve the accuracy of recognition.
Keyword:
Reprint Author's Address:
Email:
Source :
EIGHTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2016)
ISSN: 0277-786X
Year: 2016
Volume: 10033
Language: English
Cited Count:
WoS CC Cited Count: 2
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: