Indexed by:
Abstract:
In order to get high classification accuracy, feature combination is commonly used in analysis of motor imagery electroencephalography EEG signal, including the nonlinear analysis and traditional time-frequency analysis. In this paper, Sample entropy(SampEn) was computed and represented as the nonlinear feature of motor imagery EEG signal for it can quantify the probability of new information appeared in time series. In addition, orthogonal empirical mode decomposition (OEMD) was also employed to extract the average energy of selected intrinsic mode functions(IMF) as the time-frequency feature for motor imagery EEG signal. Based on a public dataset, many experiments were conducted. Slide window was used to select the best time period for a better performance in feature extraction, and cross validation of 10 folds was applied in all the classification procedure. The highest recognition rate using SampEn and OEMD is respectively 86.07% and 83.21% classified by incremental support vector machine (ISVM) respectively. However, the highest classification rate of combined features is 86.79% by using ISVM which is a little higher than that of SampEn. Big linear correlation between SampEn and energy of IMF explains why the classification accuracy by combining the two types of features is not as high as expected.
Keyword:
Reprint Author's Address:
Email:
Source :
PROCEEDINGS OF THE 2016 INTERNATIONAL FORUM ON MANAGEMENT, EDUCATION AND INFORMATION TECHNOLOGY APPLICATION
ISSN: 2352-5398
Year: 2016
Volume: 47
Page: 717-721
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: