• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Gao, Xinjie (Gao, Xinjie.) | Zhang, Ting (Zhang, Ting.) | Wang, Bo (Wang, Bo.) (Scholars:王波) | Xu, Zaizhou (Xu, Zaizhou.) | Zhang, Liang (Zhang, Liang.) | Peng, Yongzhen (Peng, Yongzhen.) (Scholars:彭永臻)

Indexed by:

EI Scopus SCIE PubMed

Abstract:

Currently, it is a major challenge for waste water treatment plants (WWTPs) to achieve enhanced nitrogen removal economically and effectively from carbon-limited sewage to meet gradually stringent discharge quality standards. Enhanced nitrogen removal can be achieved by endogenous denitrification (ED) treatment of low C/N municipal sewage, but its application is limited by the slow reaction rate. In this study, a novel process of Sludge Double Recirculation-Anaerobic/Aerobic/Anoxic (SDR-AOA) was developed to improve nitrogen removal efficiency via ED. ED was successfully enhanced by an extra sludge recirculation to post-anoxic zone and the denitrification rate increased from 0.1 to 0.17 kgN/(m(3).d). Moreover, the pre-anaerobic zone enhanced the intracellular carbon storage, which might also favor the ED process. Overall, under an influent C/N of 2.67, nitrogen removal efficiency of 97.7% was achieved with effluent total inorganic nitrogen (TIN) of 1.56 +/- 1.77 mg/L and nitrogen removal rate (NRR) of 0.14 kgN/(m(3).d). Therefore, this study provides a convenient approach to improve the nitrogen removal efficiency of municipal sewage with low C/N. (C) 2020 Elsevier Ltd. All rights reserved.

Keyword:

Sludge double recirculation Municipal sewage Nitritation Enhanced nitrogen removal Low C/N Endogenous denitrification

Author Community:

  • [ 1 ] [Gao, Xinjie]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Bo]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 3 ] [Xu, Zaizhou]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 4 ] [Zhang, Liang]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 5 ] [Peng, Yongzhen]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 6 ] [Zhang, Ting]XinKai Water Environm Investment Co Ltd, Beijing 101101, Peoples R China

Reprint Author's Address:

  • 彭永臻

    [Peng, Yongzhen]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Reuse Technol & Water Environm Recovery Engn, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

CHEMOSPHERE

ISSN: 0045-6535

Year: 2020

Volume: 252

8 . 8 0 0

JCR@2022

ESI Discipline: ENVIRONMENT/ECOLOGY;

ESI HC Threshold:138

Cited Count:

WoS CC Cited Count: 70

SCOPUS Cited Count: 79

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 12

Online/Total:628/10595108
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.