Indexed by:
Abstract:
Low-rank representation (LRR) has recently attracted great interest due to its pleasing efficacy in exploring low-dimensional subspace structures embedded in data. One of its successful applications is subspace clustering which means data are clustered according to the subspaces they belong to. In this paper, at a higher level, we intend to cluster subspaces into classes of subspaces. This is naturally described as a clustering problem on Grassmann manifold. The novelty of this paper is to generalize LRR on Euclidean space into the LRR model on Grassmann manifold. The new method has many applications in computer vision tasks. The paper conducts the experiments over two real world examples, clustering handwritten digits and clustering dynamic textures. The experiments show the proposed method outperforms a number of existing methods.
Keyword:
Reprint Author's Address:
Email:
Source :
COMPUTER VISION - ACCV 2014, PT I
ISSN: 0302-9743
Year: 2015
Volume: 9003
Page: 81-96
Language: English
Cited Count:
WoS CC Cited Count: 5
SCOPUS Cited Count: 18
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5