Indexed by:
Abstract:
The simultaneous chemical phosphorus removal (SCPR) process has been widely applied in wastewater treatment plants (WWTPs) due to the high phosphorus removal efficiency through the synergy of biological and chemical phosphorus removal (BPR and CPR). However, phosphorus removal reagents could affect the bacterial community structure in the SCPR system and further affect the BPR process. The BPR phenotypes and community structures in the SCPR system, especially the population of polyphosphate-accumulating organisms (PAOs), are not completely clear. In order to clarify these problems, the phosphorus removal performance and the PAO population in a full-scale SCPR system were investigated. Results showed that diverse PAOs still existed in the SCPR system though the BPR phenotypes were not observed. However, the relative abundances of Accumulibacter andTetrasphaera, the two most important genera of PAOs, were only 0.59% and 0.20%, respectively, while the relative abundances of Competibacter andDefluviicoccus, two genera of glycogen-accumulating organisms (GAOs), were as high as 5.77% and 1.28%, respectively. Batch tests showed that PAOs in the SCPR system still had a certain polyphosphate accumulating metabolic activity, which could gradually recover after stopping the addition of chemical reagents. This study provided a microbiological basis for the SCPR system to recover the enhanced biological phosphorus removal (EBPR) performance under suitable conditions, which could reduce the dosage of chemical reagents and the operational cost.
Keyword:
Reprint Author's Address:
Email:
Source :
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
ISSN: 0944-1344
Year: 2020
Issue: 30
Volume: 27
Page: 37877-37886
5 . 8 0 0
JCR@2022
ESI Discipline: ENVIRONMENT/ECOLOGY;
ESI HC Threshold:138
Cited Count:
WoS CC Cited Count: 6
SCOPUS Cited Count: 7
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2