Indexed by:
Abstract:
Normal form theory is robust and useful for direct bifurcation and stability analysis of nonlinear differential equations in real engineering problems. This paper develops a new computation method for obtaining a significant refinement of the normal forms for high dimensional nonlinear systems. In the theoretical model for the nonlinear oscillation of a composite laminated piezoelectric plate, the computation method is applied to compute the coefficients of the normal forms for the case of one double zero and a pair of pure imaginary eigenvalues. The algorithm is implemented in Maple V and the normal forms of the averaged equations and their coefficients for nonlinear oscillations of the composite laminated piezoelectric plate under combined parametric and transverse excitations are calculated.
Keyword:
Reprint Author's Address:
Email:
Source :
ADVANCES IN ENERGY SCIENCE AND TECHNOLOGY, PTS 1-4
ISSN: 1660-9336
Year: 2013
Volume: 291-294
Page: 2662-,
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: