Indexed by:
Abstract:
The interface transition zone (ITZ) has a significant impact on the concrete's mechanical properties and fracture modes. For the influence of ITZ's strength and elastic modulus, the extended finite element method (XFEM) is adopted to simulate the mesostructure failure process by virtue of random aggregate model under uniaxial tension. The results show that ITZ's strength and elastic modulus have a certain effect on the mechanical properties and fracture modes. With the tensile strength of ITZ increasing, the fractured modes transit from single coalescent crack to multiple non-coalescent cracks and the fracture energy increases, the ductility of concrete is enhanced. With the elastic modulus of ITZ increasing, the concrete's elastic modulus increases, the tensile strength and the fracture energy decrease.
Keyword:
Reprint Author's Address:
Source :
PROGRESS IN CIVIL ENGINEERING, PTS 1-4
ISSN: 1660-9336
Year: 2012
Volume: 170-173
Page: 3482-,
Language: English
Cited Count:
WoS CC Cited Count: 2
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: