• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Yin, Shuang (Yin, Shuang.) | Song, Peng (Song, Peng.) | Wang, Hao (Wang, Hao.) | Ma, Haoyu (Ma, Haoyu.) | Wang, Zhan (Wang, Zhan.) (Scholars:王湛) | Yu, Yanmin (Yu, Yanmin.)

Indexed by:

EI Scopus SCIE

Abstract:

The homogeneous electrocatalytic mechanism with a fast catalytic chemical reaction between a series of ferrocene derivatives and L-cysteine/N-Acetyl-L-cysteine (NAC) is systematically investigated. A comparison of different cyclic voltammetric waveforms is given to illustrate the interaction between kinetic parameter (l) and excess factor (g) in kinetic zone diagram via changing the scan rates and substrate/mediator ratio on both glassy carbon (GC) and boron doped diamond (BDD) working electrode experimentally. A split wave phenomenon is observed between ferroceneacetic acid (FAA) and L-cysteine. Also, the waveforms revealed that electron withdrawing groups (EWG) on the substrate hinders the kinetics of the homogeneous electron transfer while those on the mediator facilitates the same process. The homogeneous electrocatalytic order of the studied mediator is as follows: 1,10-ferrocenedicarboxylic acid (FDA) > FAA > hydroxymethylferrocene (HMF) > 1-hydroxyethylferrocene (HEF) and the corresponding density functional theory (DFT) calculation is applied to support this statement. Furthermore, the second-order rate constant between FAA and L-cysteine is given by the support of numerical simulation (175 (mol m(-3))(-1) s(-1)). The present study would facilitate the understanding of homogeneous electrocatalytic process, especially those possessing a fast catalytic chemical step. (C) 2020 Elsevier Ltd. All rights reserved.

Keyword:

Second-order rate constant Ferrocene derivatives Kinetic zone diagram Homogeneous electrocatalytic mechanism Electron withdrawing group

Author Community:

  • [ 1 ] [Yin, Shuang]Beijing Univ Technol, Dept Chem & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 2 ] [Song, Peng]Beijing Univ Technol, Dept Chem & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Hao]Beijing Univ Technol, Dept Chem & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 4 ] [Ma, Haoyu]Beijing Univ Technol, Dept Chem & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 5 ] [Wang, Zhan]Beijing Univ Technol, Dept Chem & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 6 ] [Yu, Yanmin]Beijing Univ Technol, Dept Chem & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China

Reprint Author's Address:

  • [Song, Peng]Beijing Univ Technol, Dept Chem & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

ELECTROCHIMICA ACTA

ISSN: 0013-4686

Year: 2020

Volume: 346

6 . 6 0 0

JCR@2022

ESI Discipline: CHEMISTRY;

ESI HC Threshold:139

Cited Count:

WoS CC Cited Count: 6

SCOPUS Cited Count: 6

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 2

Online/Total:1928/10890761
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.