Indexed by:
Abstract:
Recently, the deep ultraviolet (DUV) photodetectors fabricated from two-dimensional (2D) hexagonal boron nitride (h-BN) layers have emerged as a hot research topic. However, the existing studies show that the h-BN-based photodetectors have relatively poor performance. In this work, C doping is utilized to modulate the properties of h-BN and improve the performance of the h-BN-based photodetectors. We synthesized the h-BN atomic layers with various C concentrations varying from 0 to 10.2 atom % by ion beam sputtering deposition through controlling the sputtering atmosphere. The h-BN phase remains stable when a small amount of C is incorporated into h-BN, whereas the introduction of a large amount of C impurities leads to the rapidly deteriorated crystallinity of h-BN. Furthermore, the DUV photodetectors based on C-doped h-BN layers were fabricated, and the h-BN-based photodetector with 7.5 atom % C exhibits the best performance with a responsivity of 9.2 mA.W-1, which is significantly higher than that of the intrinsic h-BN device. This work demonstrates that the C doping is a feasible and effective method for improving the performance of h-BN photodetectors.
Keyword:
Reprint Author's Address:
Email:
Source :
ACS APPLIED MATERIALS & INTERFACES
ISSN: 1944-8244
Year: 2020
Issue: 24
Volume: 12
Page: 27361-27367
9 . 5 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:169
Cited Count:
WoS CC Cited Count: 53
SCOPUS Cited Count: 56
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 10
Affiliated Colleges: