Indexed by:
Abstract:
<正> §1.引言 求解线性方程组 a_i~Tx=b_i,i=1,2,…,n,(1.1)其中a_1,a_2,…,a_n线性无关. 设y~((1))为初值,U~((1))为任意非奇异n阶矩阵,我们用如下方法求解方程组(1.1). 先考虑前k-1个方程组成的亚定方程组 a_i~Tx=b_i,i=1,2,…,k-1.设{U~((k))}={a_1,a_2,…,a_(k-1)},这里{U~((k))}表示由U~((k))的列组成的子空间.显然,rank(U~((k)))=n-b+1.若y~((k))是相应的亚定方程的一个特解,则将其看作方程组
Keyword:
Reprint Author's Address:
Email:
Source :
计算数学
Year: 1992
Issue: 03
Page: 322-329
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 22
Affiliated Colleges: