• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Yang, S. W. (Yang, S. W..) | Hao, Y. X. (Hao, Y. X..) | Zhang, W. (Zhang, W..) | Yang, L. (Yang, L..) (Scholars:杨璐) | Liu, L. T. (Liu, L. T..)

Indexed by:

EI Scopus SCIE

Abstract:

The eccentric rotating cylindrical shell structure has an important application prospect in aerospace engineering field, such as space annular antenna. In this paper, the dynamic model of an eccentric rotating functionally graded grapheme platelets reinforced composite (FG-GPLRC) cylindrical shell based on the first-order shear deformation theory is established. The free vibration and buckling analyses of the eccentric rotating FGGPLRC cylindrical shell under the axial excitation are presented. Taking into account the influences of the Coriolis force and centrifugal force caused by eccentric rotation. Considering five grapheme platelets (GPLs) distribution patterns of the FG-GPLRC cylindrical shell, and the modified Halpin-Tsai model is used to calculate the effective Young's modulus. By utilizing the Hamilton principle, the first-order shear deformation shell theory and the von-Karman type nonlinear geometric relationships, a system of the partial differential governing equations for the eccentric rotating FG-GPLRC cylindrical shell is derived. Then, the ordinary differential equations of the cylindrical shell are obtained according to Galerkin method. The influences of the GPLs distribution pattern, weight fraction, eccentric distance, ratio of radius to thickness, ratio of length to radius, as well as rotating speed of the eccentric rotating FG-GPLRC cylindrical shell on the buckling and free vibration behaviors are discussed.

Keyword:

Eccentric rotating Cylindrical shell Buckling Free vibration FG-GPLRC

Author Community:

  • [ 1 ] [Yang, S. W.]Beijing Informat Sci & Technol Univ, Coll Mech Engn, Beijing 100192, Peoples R China
  • [ 2 ] [Hao, Y. X.]Beijing Informat Sci & Technol Univ, Coll Mech Engn, Beijing 100192, Peoples R China
  • [ 3 ] [Yang, L.]Beijing Informat Sci & Technol Univ, Coll Mech Engn, Beijing 100192, Peoples R China
  • [ 4 ] [Liu, L. T.]Beijing Informat Sci & Technol Univ, Coll Mech Engn, Beijing 100192, Peoples R China
  • [ 5 ] [Yang, S. W.]Beijing Informat Sci & Technol Univ, Beijing Key Lab Electromech Syst Measurement & Co, Beijing 100192, Peoples R China
  • [ 6 ] [Hao, Y. X.]Beijing Informat Sci & Technol Univ, Beijing Key Lab Electromech Syst Measurement & Co, Beijing 100192, Peoples R China
  • [ 7 ] [Yang, L.]Beijing Informat Sci & Technol Univ, Beijing Key Lab Electromech Syst Measurement & Co, Beijing 100192, Peoples R China
  • [ 8 ] [Liu, L. T.]Beijing Informat Sci & Technol Univ, Beijing Key Lab Electromech Syst Measurement & Co, Beijing 100192, Peoples R China
  • [ 9 ] [Zhang, W.]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 张伟

    [Zhang, W.]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

COMPOSITE STRUCTURES

ISSN: 0263-8223

Year: 2021

Volume: 263

6 . 3 0 0

JCR@2022

ESI Discipline: MATERIALS SCIENCE;

ESI HC Threshold:116

JCR Journal Grade:1

Cited Count:

WoS CC Cited Count: 51

SCOPUS Cited Count: 55

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 3

Online/Total:511/10577217
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.