Indexed by:
Abstract:
Fast and accurate P-wave arrival picking significantly affects the performance of earthquake early warning (EEW) systems. Automated P-wave picking algorithms used in EEW have encountered problems of falsely picking up noise, missing P-waves and inaccurate P-wave arrival estimation. To address these issues, an automatic algorithm based on the convolution neural network (DPick) was developed, and trained with a moderate number of data sets of 17,717 accelerograms. Compared to the widely used approach of the short-term average/long-term average of signal characteristic function (STA/LTA), DPick is 1.6 times less likely to detect noise as a P-wave, and 76 times less likely to miss P-waves. In terms of estimating P-wave arrival time, when the detection task is completed within 1 s, DPick's detection occurrence is 7.4 times that of STA/LTA in the 0.05 s error band, and 1.6 times when the error band is 0.10 s. This verified that the proposed method has the potential for wide applications in EEW.
Keyword:
Reprint Author's Address:
Email:
Source :
EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION
ISSN: 1671-3664
Year: 2021
Issue: 2
Volume: 20
Page: 391-402
2 . 8 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:87
JCR Journal Grade:3
Cited Count:
WoS CC Cited Count: 22
SCOPUS Cited Count: 29
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: