Indexed by:
Abstract:
A two-level hierarchical scheme for video-based person re-identification (re-id) is presented, with the aim of learning a pedestrian appearance model through more complete walking cycle extraction. Specifically, given a video with consecutive frames, the objective of the first level is to detect the key frame with lightweight Convolutional neural network (CNN) of PCANet to reflect the summary of the video content. At the second level, on the basis of the detected key frame, the pedestrian walking cycle is extracted from the long video sequence. Moreover, local features of Local maximal occurrence (LOMO) of the walking cycle are extracted to represent the pedestrian' s appearance information. In contrast to the existing walking-cycle-based person re-id approaches, the proposed scheme relaxes the limit on step number for a walking cycle, thus making it flexible and less affected by noisy frames. Experiments are conducted on two benchmark datasets: PRID 2011 and iLIDS-VID. The experimental results demonstrate that our proposed scheme outperforms the six state-of-art video-based re-id methods, and is more robust to the severe video noises and variations in pose, lighting, and camera viewpoint.
Keyword:
Reprint Author's Address:
Source :
CHINESE JOURNAL OF ELECTRONICS
ISSN: 1022-4653
Year: 2021
Issue: 2
Volume: 30
Page: 289-295
1 . 2 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:87
JCR Journal Grade:4
Cited Count:
WoS CC Cited Count: 3
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: