Indexed by:
Abstract:
In this paper, we show that the quadratic assignment problem (QAP) can be reformulated to an equivalent rank constrained doubly nonnegative (DNN) problem. Under the framework of the difference of convex functions (DC) approach, a semi-proximal DC algorithm is proposed for solving the relaxation of the rank constrained DNN problem whose subproblems can be solved by the semi-proximal augmented Lagrangian method. We show that the generated sequence converges to a stationary point of the corresponding DC problem, which is feasible to the rank constrained DNN problem under some suitable assumptions. Moreover, numerical experiments demonstrate that for most QAP instances, the proposed approach can find the global optimal solutions efficiently, and for others, the proposed algorithm is able to provide good feasible solutions in a reasonable time.
Keyword:
Reprint Author's Address:
Source :
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS
ISSN: 0926-6003
Year: 2021
Issue: 3
Volume: 78
Page: 825-851
2 . 2 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:87
JCR Journal Grade:2
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: