Indexed by:
Abstract:
In this paper, we study the prize-collecting k-Steiner tree problem (PC k-ST), which is an interesting generalization of both the k-Steiner tree problem (k-ST) and the prize-collecting Steiner tree problem (PCST). In the PC k-ST, we are given an undirected connected graph G= (V, E), a subset R⊆ V called terminals, a root vertex r∈ V and an integer k. Every edge has a non-negative edge cost and every vertex has a non-negative penalty cost. We wish to find an r-rooted tree F that spans at least k vertices in R so as to minimize the total edge costs of F as well as the penalty costs of the vertices not in F. As our main contribution, we propose two approximation algorithms for the PC k-ST with ratios of 5.9672 and 5. The first algorithm is based on an observation of the solutions for the k-ST and the PCST, and the second one is based on the technique of primal-dual. © 2021, Springer Nature Switzerland AG.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 0302-9743
Year: 2021
Volume: 12606 LNCS
Page: 371-378
Language: English
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 12
Affiliated Colleges: