Abstract:
针对含噪声心电信号在特征提取过程中存在的问题,采用小波去噪进行数据预处理,通过合理选取小波基函数、小波分解层数、阈值等参数,获得去噪后的心电信号。对心电信号进行二维时-频密度函数表征,针对连续小波变换滤波器组获取信号样本的连续小波变换,根据系数获得适配GoogLeNet网络的尺度图。联合运用时频分析和深度卷积神经网络实现心电信号分类。实验结果表明,提出的联合GoogLeNet模型可以实现心电信号的有效分类。
Keyword:
Reprint Author's Address:
Email:
Source :
Year: 2020
Language: Chinese
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: