• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

尉婉青 (尉婉青.) | 禹晶 (禹晶.) | 柏鳗晏 (柏鳗晏.) | 肖创柏 (肖创柏.) (Scholars:肖创柏)

Indexed by:

CSCD

Abstract:

目的 视频目标检测旨在序列图像中定位运动目标,并为各个目标分配指定的类别标签.视频目标检测存在目标模糊和多目标遮挡等问题,现有的大部分视频目标检测方法是在静态图像目标检测的基础上,通过考虑时空一致性来提高运动目标检测的准确率,但由于运动目标存在遮挡、模糊等现象,目前视频目标检测的鲁棒性不高.为此,本文提出了一种单阶段多框检测(single shot multibox detector,SSD)与时空特征融合的视频目标检测模型.方法 在单阶段目标检测的SSD模型框架下,利用光流网络估计当前帧与近邻帧之间的光流场,结合多个近邻帧的特征对当前帧的特征进行运动补偿,并利用特征金字塔网络提取多尺度特征用于检测不同尺寸的目标,最后通过高低层特征融合增强低层特征的语义信息.结果 实验结果表明,本文模型在ImageNet VID(Imagelvet for video object detetion)数据集上的mAP(mean average precision)为72.0%,相对于TCN(temporal convolutional networks)模型、TPN+LSTM(tubelet proposal network and long short term memory network)模型和SSD+孪生网络模型,分别提高了24.5%、3.6%和2.5%,在不同结构网络模型上的分离实验进一步验证了本文模型的有效性.结论 本文模型利用视频特有的时间相关性和空间相关性,通过时空特征融合提高了视频目标检测的准确率,较好地解决了视频目标检测中目标漏检和误检的问题.

Keyword:

光流 目标检测 单阶段多框检测 特征融合 特征金字塔网络

Author Community:

  • [ 1 ] [尉婉青]北京工业大学

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Source :

中国图象图形学报

ISSN: 1006-8961

Year: 2021

Issue: 3

Volume: 26

Page: 542-555

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count: -1

Chinese Cited Count:

30 Days PV: 25

Online/Total:735/10503981
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.