Abstract:
针对现有的基于注意力机制的图像描述方法描述内容与图像关联度低的问题,提出一种基于目标检测与词性分析的图像描述算法.该方法在注意力机制的基础上,通过目标检测算法提取图片中的信息,使用带有注意力机制的循环神经网络对提取到的信息进行处理,生成图像描述语句.在生成单词的过程中,算法会预测每个单词的词性,根据不同的词性选择不同的神经网络,从而提升描述语句与原图像的关联度.实验结果表明,在多种客观描述评价标准中,本文算法生成的描述语句相对目前存在的算法均有不同程度提升,同时,在主观评价中也能够更准确流畅地描述图片的内容.
Keyword:
Reprint Author's Address:
Email:
Source :
计算机与现代化
ISSN: 1006-2475
Year: 2021
Issue: 3
Page: 108-114
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 30
Affiliated Colleges: