Indexed by:
Abstract:
近年来,全卷积神经网络有效提升了语义分割任务的准确率.然而,由于室内环境的复杂性,室内场景语义分割仍然是一个具有挑战性的问题.随着深度传感器的出现,人们开始考虑利用深度信息提升语义分割效果.以往的研究大多简单地使用等权值的拼接或求和操作来融合RGB特征和深度特征,未能充分利用RGB特征与深度特征之间的互补信息.本文提出一种基于注意力感知和语义感知的网络模型ASNet(Attention-aware and Semantic-aware Network).通过引入注意力感知多模态融合模块和语义感知多模态融合模块,有效地融合多层次的RGB特征和深度特征.其中,在注意力感知多模态融合模块中,本文设计...
Keyword:
Reprint Author's Address:
Email:
Source :
计算机学报
Year: 2021
Issue: 02
Volume: 44
Page: 275-291
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 16