Indexed by:
Abstract:
深度信念网络(Deep belief network, DBN)是一种基于深度学习的生成模型,克服了传统梯度类学习算法在处理深层结构所面临的梯度消失问题,近几年来已成为深度学习领域的研究热点之一.基于分阶段学习的思想,人们设计了不同结构和学习算法的深度信念网络模型.本文在回顾总结深度信念网络的研究现状基础上,给出了其发展趋势.首先,给出深度信念网络的基本模型结构以及其标准的学习框架,并分析了深度信念网络与其他深度结构的关系与区别;其次,回顾总结深度信念网络研究现状,基于标准模型分析不同深度信念网络结构的性能;第三,给出深度信念网络的不同无监督预训练和有监督调优算法,并分析其性能;最后,给出深度...
Keyword:
Reprint Author's Address:
Email:
Source :
自动化学报
Year: 2021
Issue: 01
Volume: 47
Page: 35-49
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 12
Affiliated Colleges: