• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Dong, Hongying (Dong, Hongying.) | Chen, Xuepeng (Chen, Xuepeng.) | Cao, Wanlin (Cao, Wanlin.) (Scholars:曹万林) | Zhao, Yizhou (Zhao, Yizhou.)

Indexed by:

EI Scopus SCIE

Abstract:

To solve the problem of insufficient interface bond strength of concrete-filled square steel tubes (CFSSTs), 16 large CFSST specimens with eight different types of connectors (no additional connectors, built-in studs, built-in circular ribs, built-in vertical ribs, built-in reinforcement cage, and various combinations of the above) were designed for push-out testing. Specimens were constructed using high-strength concrete or high-strength recycled aggregate concrete (RAC). The bond behavior and slip failure mechanism were analyzed by comparing the force-slip curves, slip displacements, and steel tube strains. The bond strength calculation method and bondslip constitutive relationship of the interface under multiple parameters were obtained. Experiments revealed the following: bond-slip curves for CFSST without additional connectors were composed of an ascending section and a residual section; for tubes with different connectors, the peak values of the curves were higher; the performance-price ratio of studs and circular ribs for improving bond strength was high, and the combined use of studs and circular ribs can work well; the combination of circular ribs and vertical ribs can significantly improve bond strength and energy dissipation capacity; RAC had better bond behavior than normal concrete in HSCFSST without additional connectors or built-in vertical ribs. The predicted force-slip curves agreed well with the test curves, providing a theoretical basis for CFSST applications.

Keyword:

Bond behavior Connector Concrete-filled steel tube Large square steel tube Recycled aggregate concrete Push-out test

Author Community:

  • [ 1 ] [Dong, Hongying]Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Chen, Xuepeng]Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Cao, Wanlin]Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Zhao, Yizhou]Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 曹万林

    [Cao, Wanlin]Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

ENGINEERING STRUCTURES

ISSN: 0141-0296

Year: 2020

Volume: 211

5 . 5 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:115

Cited Count:

WoS CC Cited Count: 21

SCOPUS Cited Count: 28

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Online/Total:1322/10605654
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.