Indexed by:
Abstract:
Learning unsupervised representations from multivariate medical signals, such as multi-modality polysomnography and multi-channel electroencephalogram, has gained increasing attention in health informatics. In order to solve the problem that the existing models do not fully incorporate the characteristics of the multivariate-temporal structure of medical signals, an unsupervised multi-Context deep Convolutional AutoEncoder (mCtx-CAE) is proposed in this paper. Firstly, by modifying traditional convolutional neural networks, a multivariate convolutional autoencoder is proposed to extract multivariate context features within signal segments. Secondly, semantic learning is adopted to auto-encode temporal information among signal segments, to further extract temporal context features. Finally, an end-to-end multi-context autoencoder is trained by designing objective function based on shared feature representation. Experimental results conducted on two public benchmark datasets (UCD and CHB-MIT) show that the proposed model outperforms the state-of-the-art unsupervised feature learning methods in different medical tasks, demonstrating the effectiveness of the learned fusional features in clinical settings. © 2020, Science Press. All right reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
Journal of Electronics and Information Technology
ISSN: 1009-5896
Year: 2020
Issue: 2
Volume: 42
Page: 371-378
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 21
Affiliated Colleges: