• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Guo, Liting (Guo, Liting.) | Li, Xiaoyan (Li, Xiaoyan.) (Scholars:李晓延) | Yao, Peng (Yao, Peng.) | Li, Yang (Li, Yang.)

Indexed by:

EI Scopus CSCD

Abstract:

Generally, the failure of solder joint in electronic products may cause the entire product to be scrapped. In this case, the recycling of electronic components is of great significance for saving resources. It is worth pointing out that the effective reuse of electronic components rely on perfect separation of welding interface of them. Aiming at paving the way for developing a feasible interface separation technique theoretically, mole-cular dynamics simulation was carried out to study the effects of electric field direction and strength on the diffusion behavior of atoms at Cu/Cu3Sn interface. It was found that the direction of the electric field played a critical role in affecting the diffusion behavior of the atoms at Cu/Cu3Sn interface. Under the same conditions, the diffusion of atoms were more likely to occur in the models under a positive electric field than that in the one without electric field. Furthermore, study on the diffusion behavior of atoms at Cu/Cu3Sn interface under electric fields of diverse intensities were conducted. As could be seen from the results, the increase of electric field intensities contributed to raising the intrinsic diffusion coefficient of Cu3Sn atoms near the interface, while lowering the intrinsic diffusion coefficient of atoms in Cu crystal, so as to enlarge the difference in diffusion coefficient of interface atoms. Consequently, more obvious Kirkendall effect would be produced, which was beneficial to the separation of Cu/Cu3Sn interface. © 2020, Materials Review Magazine. All right reserved.

Keyword:

Separation Network components Atoms Binary alloys Molecular dynamics Tin alloys Diffusion Copper alloys Electric fields

Author Community:

  • [ 1 ] [Guo, Liting]College of Materials Science and Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Li, Xiaoyan]College of Materials Science and Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Yao, Peng]College of Materials Science and Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Li, Yang]College of Materials Science and Engineering, Beijing University of Technology, Beijing; 100124, China

Reprint Author's Address:

  • 李晓延

    [li, xiaoyan]college of materials science and engineering, beijing university of technology, beijing; 100124, china

Show more details

Related Keywords:

Source :

Materials Reports

ISSN: 1005-023X

Year: 2020

Issue: 1

Volume: 34

Page: 02137-02141

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count: 6

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 6

Online/Total:420/10799096
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.