Indexed by:
Abstract:
In the process of sewage treatment, energy consumption and effluent quality are a pair of contradictory indicators. In order to find the optimal solution of these two objectives, this paper improves multi-objective evolutionary algorithm based on decomposition (MOEA/D) that expects even distribution with fewer evolution times for an approximate Pareto front. This algorithm aims at the new solution by using the MOEA/D algorithm each time, finds the most suitable sub-problem of the new solution from all the sub-problems, and carries out replacement of the population within its neighborhood, based on the original sub-problem. Secondary search improves the utilization of the child generation and finds the approximate Pareto front in the optimization problem with fewer iterations. Experiments show that the algorithm significantly reduces the number of steps to find the Pareto front, which results in a significant increase in the performance of the MOEA/D algorithm and achieves the goal of optimization in the wastewater treatment process. © 2020, Editorial Department of Control Theory & Applications South China University of Technology. All right reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
Control Theory and Applications
ISSN: 1000-8152
Year: 2020
Issue: 1
Volume: 37
Page: 169-175
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 5
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: