Indexed by:
Abstract:
This study explored the quantitative mechanisms of heterotrophic nitrification-aerobic denitrification (HN-AD) in a pilot-scale two-stage tidal flow constructed wetland (TFCW). The TFCW packed shale ceramsite (SC) and activated alumina (AA) at each stage, respectively, and aimed to improve decentralized wastewater treatment efficiency. In start-up phases, AA-TFCW accelerated NH4+-N decline, reaching transformation rates of 6.68 mg NH4+-N/(L.h). In stable phases, SC-AA-TFCW resisted low-temperatures (<13 degrees C), achieving stable NH4+-N and TN removal with effluents ranging 6.36-8.13 mg/L and 9.43-14.7 mg/L, respectively. The dominant genus, Ferribacterium, was the core of HN-AD bacteria, simultaneously removing NH4+-N and NO3--N by nitrate assimilation and complete denitrification (NO3--N -> N2), respectively. The quantitative associations highlighted importance of nitrification, nitrate assimilation, and denitrification in nitrogen removal. HN-AD bacteria (e.g., Lactococcus, Thauera, and Aeromonas) carried high-weight genes in quantitative associations, including napAB, nasA and gltBD, implying that HN-AD bacteria have multiple roles in SC-AA-TFCW operation.
Keyword:
Reprint Author's Address:
Email:
Source :
BIORESOURCE TECHNOLOGY
ISSN: 0960-8524
Year: 2021
Volume: 337
1 1 . 4 0 0
JCR@2022
ESI Discipline: BIOLOGY & BIOCHEMISTRY;
ESI HC Threshold:84
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 52
SCOPUS Cited Count: 64
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 13
Affiliated Colleges: