Indexed by:
Abstract:
The performance of lithium-ion battery is greatly affected by temperature, so the battery module must be equipped with an effective thermal management system (TMS) during operation. In this study, a new type of active air cooling TMS based on U-shaped micro heat pipe array (MHPA) is developed to reduce a battery's temperature rise and improve the temperature uniformity of the battery module throughout the entire charge and discharge process. Modules with and without U-shaped MHPA are established for comparative experiments. They can dissipate heat in three methods, namely active air cooling with U-shaped MHPA (AAC-MHPA), passive air cooling with U-shaped MHPA (PAC-MHPA), and passive air cooling with no U-shaped MHPA (PAC-NMHPA). Results show that under 2C constant current charge and 3C constant current discharge conditions, the maximum instantaneous highest temperatures of AAC-MHPA and PAC-NMHPA are 51.70 degrees C and 57.83 degrees C, respectively. This outcome demonstrates that the thermal management performance of AAC-MHPA is the best. This cooling method has good thermal management performance even under high charge and discharge rates conditions.
Keyword:
Reprint Author's Address:
Email:
Source :
JOURNAL OF POWER SOURCES
ISSN: 0378-7753
Year: 2021
Volume: 507
9 . 2 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:87
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 82
SCOPUS Cited Count: 88
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: