Indexed by:
Abstract:
Although the chitosan-WTRs particulate adsorbent prepared by embedding method has been proved to have arsenic adsorption capacity, the capacity of it is greatly weakened compared with the original water treatment residuals (WTRs). In this study, WTRs and chitosan were used as raw materials to prepare a new kind of adsorbent beads by a homogeneous method. At the same time, in order to enhance the adsorption capacity and reduce the limitation of kinetics, freeze-drying method was chosen to dry the adsorbent. The WTRs-chitosan beads by homogeneous method (WCB) were characterized by SEM, XRD, XPS and other methods. According to the characterization results, there are regularly arranged pores inside the particles, and the iron in the particles mainly exists in the form of amorphous iron oxyhydroxide. According to the results of batch experiment, the pseudo-second-order kinetic model has a higher degree of fit, indicating that the WCB adsorbs As(V) mainly by chemical adsorption. The maximum adsorption capacity estimated from the Langmuir isotherm model is 42.083 mg/g, which is almost same as the WTRs. Weak acid and neutral conditions are conducive to adsorption, while alkaline conditions have a significant inhibitory effect on arsenic adsorption.
Keyword:
Reprint Author's Address:
Email:
Source :
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES
ISSN: 0141-8130
Year: 2021
Volume: 184
Page: 313-324
8 . 2 0 0
JCR@2022
ESI Discipline: BIOLOGY & BIOCHEMISTRY;
ESI HC Threshold:84
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 26
SCOPUS Cited Count: 27
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8