Indexed by:
Abstract:
Membrane bioreactor (MBR) technology has been commonly employed in the treatment of domestic wastewater. However, total phosphorus (TP) removal performance and membrane fouling are two major challenges for MBR application. In this study, FeCl3 center dot 6H(2)O was added to the membrane tank (MT) to improve the overall performance of University of Cape Town (UCT)-MBR. When the Fe(III) dosing concentration was increased from 0 to 1.8 mmol/L, the concentration of TP in the effluents was declined from 3.0 to 0.1 mg/L, and the high transmembrane pressure was reduced by 21.9%. The total nitrogen (TN) removal efficiency remained similar. However, when the Fe(III) dosing concentration was increased to 2.2 and 2.6 mmol/L, the phosphorus accumulating organisms (PAOs) and ammonia oxidizing bacteria (AOB) activities were greatly inhibited. Based on the overall nutrient removal and membrane fouling mitigation performances, the optimal Fe(III) dosing concentration was determined to be 1.8 mmol/L (C) 2021 Elsevier B.V. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
ENVIRONMENTAL TECHNOLOGY & INNOVATION
ISSN: 2352-1864
Year: 2021
Volume: 23
7 . 1 0 0
JCR@2022
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 9
SCOPUS Cited Count: 10
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: