• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Wang, Gongming (Wang, Gongming.) | Jia, Qing-Shan (Jia, Qing-Shan.) | Qiao, Junfei (Qiao, Junfei.) (Scholars:乔俊飞) | Bi, Jing (Bi, Jing.) | Zhou, MengChu (Zhou, MengChu.)

Indexed by:

EI Scopus SCIE

Abstract:

A continuous stirred-tank reactor (CSTR) system is widely applied in wastewater treatment processes. Its control is a challenging industrial-process-control problem due to great difficulty to achieve accurate system identification. This work proposes a deep learning-based model predictive control (DeepMPC) to model and control the CSTR system. The proposed DeepMPC consists of a growing deep belief network (GDBN) and an optimal controller. First, GDBN can automatically determine its size with transfer learning to achieve high performance in system identification, and it serves just as a predictive model of a controlled system. The model can accurately approximate the dynamics of the controlled system with a uniformly ultimately bounded error. Second, quadratic optimization is conducted to obtain an optimal controller. This work analyzes the convergence and stability of DeepMPC. Finally, the DeepMPC is used to model and control a second-order CSTR system. In the experiments, DeepMPC shows a better performance in modeling, tracking, and antidisturbance than the other state-of-the-art methods.

Keyword:

Chemical reactors model predictive control Prediction algorithms Feature extraction Predictive control growing deep belief network (GDBN) model Continuous stirred-tank reactor (CSTR) system optimal controller Predictive models Training Computational modeling transfer learning

Author Community:

  • [ 1 ] [Wang, Gongming]Tsinghua Univ, Ctr Intelligent & Networked Syst CFINS, Dept Automat, Beijing 100084, Peoples R China
  • [ 2 ] [Jia, Qing-Shan]Tsinghua Univ, Ctr Intelligent & Networked Syst CFINS, Dept Automat, Beijing 100084, Peoples R China
  • [ 3 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Bi, Jing]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Zhou, MengChu]New Jersey Inst Technol, Dept Elect & Comp Engn, Newark, NJ 07102 USA
  • [ 6 ] [Zhou, MengChu]King Abdulaziz Univ, Ctr Res Excellence Renewable Energy & Power Syst, Jeddah 21589, Saudi Arabia

Reprint Author's Address:

  • 乔俊飞

    [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Related Article:

Source :

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

ISSN: 2162-237X

Year: 2021

Issue: 8

Volume: 32

Page: 3643-3652

1 0 . 4 0 0

JCR@2022

ESI Discipline: COMPUTER SCIENCE;

ESI HC Threshold:87

JCR Journal Grade:1

Cited Count:

WoS CC Cited Count: 75

SCOPUS Cited Count: 98

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 5

Online/Total:225/10507651
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.