Indexed by:
Abstract:
Gestures recognition based on surface electromyography (sEMG) has been widely used for human-computer interaction. However, there are few research studies on overcoming the influence of physiological factors among different individuals. In this paper, a cross-individual gesture recognition method based on long short-term memory (LSTM) networks is proposed, named cross-individual LSTM (CI-LSTM). CI-LSTM has a dual-network structure, including a gesture recognition module and an individual recognition module. By designing the loss function, the individual information recognition module assists the gesture recognition module to train, which tends to orthogonalize the gesture features and individual features to minimize the impact of individual information differences on gesture recognition. Through cross-individual gesture recognition experiments, it is verified that compared with other selected algorithm models, the recognition accuracy obtained by using the CI-LSTM model can be improved by an average of 9.15%. Compared with other models, CI-LSTM can overcome the influence of individual characteristics and complete the task of cross-individual hand gestures recognition. Based on the proposed model, online control of the prosthetic hand is realized.
Keyword:
Reprint Author's Address:
Email:
Source :
SCIENTIFIC PROGRAMMING
ISSN: 1058-9244
Year: 2021
Volume: 2021
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:87
JCR Journal Grade:3
Cited Count:
WoS CC Cited Count: 3
SCOPUS Cited Count: 5
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: